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Three-dimensional boundary element analysis of drop
deformation in confined flow for Newtonian and

viscoelastic systems
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SUMMARY

An adaptive (Lagrangian) boundary element approach is proposed for the general three-dimensional
drop deformation in confined flow. The adaptive method is stable as it includes remeshing capabilities of
the deforming interface between drop and suspending fluid, and thus can handle large deformations.
Both drop and surrounding fluid are viscous incompressible and can be Newtonian or viscoelastic. A
boundary-only formulation is implemented for fluids obeying the linear Jeffrey’s constitutive equation.
Similarly to the formulation for two-dimensional Newtonian fluids (Khayat RE, Luciani A, Utracki LA.
Boundary element analysis of planar drop deformation in confined flow. Part I. Newtonian fluids.
Engineering Analysis of Boundary Elements 1997; 19: 279), the method requires the solution of two
simultaneous integral equations on the interface between the two fluids and the confining solid boundary.
Although the problem is formulated for any confining geometry, the method is illustrated for a
deforming drop as it is driven by the ambient flow inside a cylindrical tube. The accuracy of the method
is assessed by comparison with the analytical solution for two-phase radial spherical flow, leading to
good agreement. The influence of mesh refinement is examined for a drop in simple shear flow.
Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: boundary element; 3D; drop deformation; viscoelastic systems

1. INTRODUCTION

This study is concerned with the three-dimensional drop deformation of a single drop as it is
subjected to the action of the ambient flow inside a channel. The boundary element method
(BEM) is extended to treat both Newtonian and viscoelastic systems. Extensive studies have
been carried for two-dimensional deformation. The two-dimensional modeling imposes limits
on the physical description of the problem. For example, the droplets are modeled as infinite
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cylinders and no velocity component in the direction transverse to the plane of the channel is
taken into account. Aside from its physical and practical significance, the present three-
dimensional formulation constitutes a good benchmark to examine the effectiveness of the
BEM for multiphase and moving-boundary problems.

The simulation of drop deformation in an ambient flow constitutes a class of problem of the
moving-boundary type. For moving-boundary problems, the implementation of conventional
numerical approaches, such as the methods of finite elements or finite difference, can often be
extremely costly given the requirement for domain remeshing at each time step of the
procedure. Remeshing and mesh refinement are easily handled when the BEM is used, even for
three-dimensional problems [1–6]. The method offers an obvious advantage when dealing with
moving-domain problems as it necessitates only the discretization of the boundary and not
that of the inner volume domain. The three-dimensional problem is, therefore, reduced to
computing the flow field on the two-dimensional boundary. Thus, the simplicity in implemen-
tation of the BEM and its ability to handle complex three-dimensional moving-boundary flows
have recently been demonstrated for confined and free surface flows [1–6].

More generally, different approaches may be used for the solution of moving-boundary/
initial value problems, but none of them is general enough to simulate all types of moving or
free boundary problems. These methods may be classified as Eulerian, Lagrangian, and mixed
Eulerian–Lagrangian. However, these (domain) methods have rarely been applied to drop
deformation. The principal difficulty with solving moving-boundary problems is that the
position of the interface is a priori unknown, and must be determined as part of the solution.
The BEM relates velocities at points within the fluid to the velocity and stress on the bounding
surfaces. It is thus an ideal method for studying moving-boundary problems, such as a drop
deformation in another fluid. The advantages of the BEM include the reduction of problem
dimensionality, the direct calculation of the interfacial velocity, the ability to track large
surface deformations, and the potential for easy incorporation of interfacial tension as well as
other surface effects. The BEM has been applied to a number of problems in materials
processing of the moving-boundary type. These problems include the transient cavity mixing of
Newtonian and viscoelastic fluids [1,2], the flow of a metal in the shot sleeve of die casting
machines [3], the transient three-dimensional extrusion [4], the penetration stage during
gas-assisted injection molding [5], and the prediction of flow movement during the evacuation
of air from the mold during blow molding and thermoforming [6].

The BEM has also been the method of choice for problems of drop deformation. While
extensive work has been devoted to the modeling and simulation of drops deforming in an
infinite fluid medium, relatively little work has been done in the case of a drop deforming in
a confined medium. In both cases, most simulations were carried out using the BEM.
Applications of the BEM have ranged from the classical study of a rising drop in an otherwise
quiescent medium [7–9] to more complex situations, such as drop break-up and coalescences
[10,11], the deformation of biological cells [12,13], and the deformation of small drops in
electric and magnetic fields [14]. Some studies also included the influence of non-uniform flow,
such as the deformation of drops in shear [15,16] and extensional [17–19] flows. More recently,
the BEM has been extended to include the motion of a drop in the vicinity of a plane wall
[12,20,21], a deformable interface [22], the deformation of drops in confined flows such as
inside a circular channel [23,24], and in a channel with constriction [25]. These latter studies,
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however, examined only axisymmetric motion. The drop deformation was, therefore, confined
along the axis of the channel. Some work, although very little, dealt with three-dimensional
deformation, such as a drop placed in an ambient planar shear wall, and the deformation of
a liquid film flowing down an inclined wall over a particle captured by the wall [24]. For
additional studies on drop deformation and related works, see References [15,24,26–28].

Using the BEM, Khayat and associates recently assessed the two-dimensional influence of
shear and elongation on drop deformation with relevance to mixing [29–34]. Confined flow
configurations of both Newtonian and viscoelastic systems were examined, such as a drop
deforming in convergent–divergent, purely divergent, and straight channels [29,30]. A
boundary element analysis was also carried out to simulate the drop deformation in the screw
channel of a mixing extruder [31]. Experiments were carried out in rectangular tubes for drops
initially located on and off the tube axis. Good agreement was obtained upon comparison
between theory and experiment despite the limiting assumption of two-dimensional analysis
[32,33]. A shear- or elongation-dominated drop deformation depends on the size of the drop
relative to the channel dimension(s), and its position relative to the axis of the channel. The
influence of viscosity ratio and interfacial tension on the drop deformation was also examined.
The effects of shear thinning were recently examined for a drop moving in a Newtonian
ambient fluid [34]. These studies were, however, limited to two-dimensional flow.

The present paper focuses on the viscoelastic, three-dimensional deformation of a drop
inside a duct of arbitrary shape, with emphasis on circular flow. The problem is of industrial
and fundamental interests as it concerns mixing and dispersing in multi-component liquid
systems. The inherent transient nature of the flow process and the presence of a moving
interface make the simulation of the problem challenging because of the non-linearities
involved. The challenge becomes even greater if both inertia and non-Newtonian effects are
accounted for. Such non-linear phenomena have been addressed in moving-boundary problems
with relevance to polymer processing. For instance, viscoelastic effects were examined for the
growth of spherical and cylindrical shells of fluids obeying the highly non-linear viscoelastic
constitutive model [35]. It was found that, even under constant driving pressure, oscillatory
growth results from elastic normal stress effects. In order to assess the mathematical intricacies
in the case of pressure-driven flows, Khayat [36] examined the small planar deformation of a
viscoelastic column of fluid obeying the upper-convected Maxwell constitutive model by
applying a regular perturbation approach. It was found that the governing equations are
indeed hyperbolic and, therefore, unlike the Navier–Stokes equations, they can entertain an
oscillatory solution for a statically stressed fluid. The same problem was later examined for
large deformations using the finite element method [37]. Non-linear effects, such as those
stemming from fluid elasticity, fluid inertia, or the high rate of deformation of the interface or
free surface, are difficult to account for in a boundary element approach despite the advent of
recent techniques to handle non-linear and transient problems [28,38,39].

For non-linear viscoelastic problems, the BEM traditionally requires the discretization of a
volume integral, which includes all the non-linear terms in the form of a pseudo-body force
[40,41]. In this case, the major advantage of the BEM is lost as a result of the inner volume
discretization. More recent techniques, such as the methods of dual- and multiple-reciprocity,
have been developed to transform the volume integral into a boundary integral. Although
these methods still require the evaluation of the flow field at internal points, they do not
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require the discretization of the inner domain, and the BEM retains its major advantage.
However, the capability of such techniques to handle highly non-linear problems, such as flows
with strong inertia or (elastic) normal stress effects, remains questionable [28,38,39,42,43].

In this study, inertia and non-linear viscoelastic (convective) effects are assumed negligible.
Both drop and suspending fluid obey the linear Oldroyd-B or Jeffrey’s equation [44]. Typically,
existing BEM formulations for linear viscoelastic problems are carried out in the frequency
domain [45–47]. The boundary integral equations in the current study are obtained and solved
in the time domain. The derivation of the boundary integral equation for viscoelastic flow is
based on the Laplace transform of the flow variables. The association of the integral transform
of the viscoelastic solution with that associated with the Newtonian flow problem is similar to
the correspondence principle for linear viscoelastic solids or the elastico-viscoelastic analogy
[48,49]. Although the derivation given here uses the Laplace transform, an analogous proce-
dure follows from the use of the Fourier transform. Read [50] was the first to recognize this
association through the Fourier transform, while Sips [51], Brull [52], and Lee [53] gave the
corresponding Laplace transform results. The present procedure consists of replacing the
viscosity by the appropriate form in the transformed equations and reinterpreting the trans-
formed flow variables as transformed viscoelastic field variables. The transformed equations
are then solved and the solution is inverted to obtain the evolution of the flow field with time.
In the present work, however, the inversion is avoided and the boundary integral equations are
derived in the time domain. A time-marching scheme is then implemented for the discretization
of the time derivatives and the solution of the integral equations.

The paper is organized as follows. The governing equations, boundary and initial conditions
are discussed in Section 2. The boundary integral equations for two-phase viscoelastic flow are
derived in Section 3. The numerical implementation and solution procedure are covered in
Section 4. Numerical assessment of the method and results on the influence of fluid properties
on drop deformation is given in Section 5. Concluding remarks are given in Section 6.

2. GOVERNING EQUATIONS, BOUNDARY AND INITIAL CONDITIONS

In this section, a general formulation of the boundary integral equations for viscoelastic fluids
obeying the Jeffrey’s constitutive model is presented. These equations are then applied to the
deformation of a drop in a confined medium. Only low-Reynolds number flows, typically
characterized by small velocities, small length scales, and/or high viscosity, will be considered.
In this limit, the inertia terms in the momentum equation are negligible, so the flow is in a state
of creeping motion.

2.1. Go6erning equations

At any instant of time, t, the drop, which occupies a three-dimensional region, Vd(t), is
assumed to be neutrally buoyant so the effects of gravity and any external body forces are
neglected. The suspending fluid occupies the outer region, Vs(t), and is driven by an imposed
pressure gradient, traction, or movement of the outer boundary of the confining channel. The
situation is typically illustrated in Figure 1. The regions Vs(t) and Vd(t) are assumed separated
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Figure 1. Schematic of flow configuration for drop deformation inside a confining duct. Two-phase
system consists of suspending fluid region, Vs(t) bounded by Gs(t)=Gc@Gi(t), and drop region, Vd(t)

bounded by Gi(t).

at all times by a moving interface, Gi(t). Thus, situations where the drop comes in contact with
the boundary of the duct, Gc, and drop break-up are excluded. The region Vs(t) is always
bounded by Gi(t) and Gc; it is thus convenient to introduce Gs(t)=Gi(t)@Gc as the boundary
of Vs(t). The conservation of mass and momentum equations in each region may be written as

9 ·ua(x, t)=0, 9 ·sa(x, t)=0, x�Va(t)@Ga(t) (1)

with the subscript a=d or s, corresponding to a variable in the drop or suspending fluid
region respectively. Here, 9 is the gradient operator, x is the position vector, ua(x, t) is the
velocity vector, and sa(x, t) is the total stress tensor. This latter term is given in terms of the
hydrostatic pressure pa(x, t) and excess stress tensor Sa(x, t), such that

sa(x, t)= −pa(x, t)I+haSa(x, t), x�Va(t)@Ga(t) (2)

where ha is the viscosity of the fluid and I is the identity tensor. The acceleration term (ua/(t
in the momentum conservation equation is neglected, so that for a Newtonian fluid, the
formulation in question is not strictly unsteady but quasi-steady. This quasi-steady state
assumption is valid whenever L2/na�T, where L and T are typical characteristic length and
time of the flow respectively, and na is the kinematic viscosity. In the present case, T�L/U,
where U is a typical value of the driving velocity. Thus, for the quasi-steady state assumption
to apply, one must have the Reynolds number Re=UL/na�1. This is indeed typically the case
for fluids of interest to mixing problems involving high-viscosity fluids. Physically, the
quasi-steady state approximation means that a Newtonian fluid immediately adjusts to
changes in the movement of the boundary or boundary conditions. This is not necessarily the
case for a viscoelastic fluid.

Although the flow is expected to be significantly influenced by the constitutive model, the
choice of a suitable model for Sa(x, t) is not critical in the present study. The study’s major
objective is to investigate the influence of fluid elasticity on an already complex flow behavior
as it arises for Newtonian fluids alone. It is then more prudent to adopt as simple a viscoelastic
constitutive equation as possible. Moreover, the assumption of linear constitutive behavior
makes the approach inadequate to handle highly non-linear viscoelastic phenomena. Thus,
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although large strains are present in the flows examined here, only small strain rates are
assumed to be involved, making the usually important non-linearities in the constitutive
equation rather negligible. Such non-linearities typically stem from convective and upper-
convective terms, and the dependence of viscosity and relaxation time on shear and elongation
rates. In this study, the constitutive equation for Sa(x, t) is taken to correspond to the Jeffrey’s
model [44]

la
(1)S: a(x, t)+Sa(x, t)=haÈDa(x, t)+la

(2)D: a(x, t)É, x�Va(t)@Ga(t) (3)

where la
(1) and la

(2) (05la
(2)Bla

(1)) are the relaxation and retardation times of the fluid
occupying Va(t) respectively, and Da(x, t)9ua(x, t)+9ua

t (x, t) is the rate-of-strain tensor.
Note that an overdot denotes partial differentiation with respect to time. Despite its simplicity,
the Jeffrey’s model is known to be adequate to describe the rheology of polymer solutions [44].
Typically, the solution is composed of a polymer solute in a Newtonian solvent, with viscosity
ha

(p) and ha
(s) respectively. It is then convenient to express Sa(x, t) as a sum of Newtonian and

elastic contributions, such that

Sa(x, t)=haDa(x, t)+ta(x, t) (4)

where ta(x, t) is the elastic part of the stress tensor. In this case, the governing equations for
ua(x, t), pa(x, t), and ta(x, t) follow from Equations (1)–(4), and may be written here as

9 ·ua(x, t)=0 (5)

9 ·ta(x, t)+ha
(s)92ua(x, t)−9pa(x, t)=0, x�Va(t)@Ga(t) (6)

la
(1)t; a(x, t)+ta(x, t)=ha

(p)Da(x, t) (7)

In this case, the retardation time is related to the relaxation time and the polymer-to-solvent
viscosity ratio

la
(2)=

la
(1)ha

(s)

ha
(s)+ha

(p)=
la

(1)

1+ (ha
(p)/ha

(s))
(8)

The viscosity of the fluid in region Va(t) becomes simply the sum of the solvent and solute
viscosities: ha=ha

(s)+ha
(p). In the limit ha

(s)�0, Equations (6) and (7) reduce to the equations
corresponding to Maxwell flow or polymer melt. The Newtonian limit is recovered if, further,
la

(1)�0.

2.2. Boundary conditions

While the boundary conditions on Gc are straightforward to implement, those on Gi(t) must be
examined more closely. The fluid is assumed to adhere to the solid boundary, so that stick
boundary conditions apply on Gc. More generally, the velocity is assumed to be fully
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prescribed on Gc. At the entrance and exit of the channel, the fluid is assumed to obey
Poiseuille flow. The velocity boundary condition may then, conveniently, be written in the
following compact form:

us(x, t)=uc(x), x�Gc (9)

Thus, the flow field is determined through Equations (1) and (2) for each fluid medium, and
is subject to condition (9) on Gc, and dynamic and kinematic conditions on Gi(t). The proper
choice and implementation of the latter is not obvious [54].

In this paper, the interface is assumed to deform pointwise along the normal, n(x, t), with
the normal projection of the fluid velocity at the interface. This method keeps the points evenly
distributed on the interface. Thus, the following kinematic boundary condition holds on Gi(t):

dx
dt

=n(x, t)[n(x, t) ·u(x, t)], x�Gi(t) (10)

Here n is the normal unit vector at the interface directed from the suspending fluid region to
the region occupied by the drop. A Lagrangian approach, such as the one involving the
solution of Equation (10), requires usually remeshing or mesh refinement of the free surface.
Remeshing is relatively easily handled by the BEM, given the lower dimension of the boundary
relative to domain methods.

The dynamic condition at the interface is based on the continuity of the tangential stress and
discontinuity of normal stress caused by the interfacial tension. Let ta(x, t)=sa(x, t) ·n(x, t) be
the traction so that the dynamic condition becomes

ts(x, t)− td(x, t)=gk(x, t)n(x, t), x�Gi(t) (11a)

where k(x, t) is the local curvature and g is the interfacial tension coefficient. Note that
boundary condition (11a) is derived under conditions of equilibrium and uniform interfacial
tension. Its validity under dynamic conditions is simply assumed [55]. The continuity of
velocity also applies at the interface so that

us(x, t)=ud(x, t)ui(x, t), x�Gi(t) (11b)

where the velocity at the interface is conveniently defined as ui(x, t).

2.3. Initial conditions

As to the initial conditions, the fluid is assumed to be initially at rest, or more particularly, in
a stress-free state

ua(x, t=0)0, ta(x, t=0)=0, x�Va(t=0)@Ga(t=0) (12)

The assumption of initial equilibrium may seem incompatible with the assumption that the
acceleration term in the momentum equation is negligible. This is certainly true if the initial
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jump in the boundary condition(s) is significant. However, since the viscosity of the fluid is
high and the imposed velocity is typically low, the assumption of negligible acceleration, even
initially, may still be valid. Conditions (12) greatly simplify the solution procedure for the
viscoelastic flow as will be seen below.

3. BOUNDARY INTEGRAL FORMULATION

In this section, the boundary integral equation is derived for the general viscoelastic flow of the
linear Oldroyd-B type. Emphasis is placed on two-phase flow. The numerical solution
procedure and time-marching scheme are also described.

3.1. Generalized boundary integral equation for two-phase 6iscoelastic flow

While the formalism behind the BEM for Stokes flow is well-established [24,28], that
corresponding to viscoelastic fluids is relatively unexplored. Given the linearity of the constitu-
tive equation (4), the governing equations can be Laplace transformed. The problem reduces
to that corresponding to Stokes flow in the frequency domain. The Voltera principle in the
frequency domain, which is also known as the correspondence principle [26–28], allows the
solution of a boundary value problem in viscoelasticity to be obtained from the solution of the
corresponding Newtonian problem, with the viscosity being replaced by a transformed
characteristic of the fluid. The final boundary integral equation is obtained in the time domain.

The first step in the procedure consists of taking the Laplace transform of the governing
equations (5)–(7). Since the fluid is incompressible, the transformed continuity and momentum
equations retain the same form in the frequency domain

9 · ūa(x, s)=0 (13)

9 · t̄a(x, s)+ha
(s)92ūa(x, s)−9p̄a(x, s)=0, x�Va@Ga (14)

where an overbar on the velocity or stress variable designates Laplace transformation. An
expression for the transformed excess stress is also obtained from Equation (7) in terms of the
transformed rate-of-strain tensor, G( a(x, s), which is mathematically equivalent to Newton’s law
of viscosity

t̄a(x, s)=
ha

(p)

la
(1)+1

G( a(x, s)
ha

(p)

la
(1)+1

[9ua(x, s)+9ua
t (x, s)] (15)

If Equation (15) is inserted in Equation (14), and Equation (13) is used, then the momentum
equation in the frequency domain takes the same form as for Stokes flow

h̄a92ūa(x, s)−9p̄a(x, s)=0; h̄a=
1

la
(1)s+1

ha (16)
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Note that an equivalent viscosity, h̄a, is now obtained, which is a function of the Laplace
parameter s. The solution procedure for the problem in the frequency domain proceeds
similarly to the case of the flow of a Newtonian fluid [24,28]. In order to derive the integral
representation for Equations (13) and (16), the fundamental solution for the problem is
needed. This singular solution corresponds to the velocity and stress fields at a point x
produced by a point force F( (s)d(x−y) located at y, where d is the Dirac delta function. In this
case, the acting force is generally a function of the parameter s, and therefore depends on time.
For a viscoelastic fluid, this also corresponds to the same force that acts initially at time t=0.
In other words, the force in real time is given by Fd(x−y)d(t). Denoting the singular solution
variables with asterisks, and taking the Laplace transform of the viscoelastic equations over
the infinite medium, the problem reduces to that corresponding to Stokes flow in the frequency
domain

9 · ūa*(x�y, s)=0, 9 · s̄a*(x�y, s)=F( (s)d(x−y) (17a)

where s̄a*(x�y, s)= − p̄a*(x�y, s)I+ h̄aG( a*(x�y, s), with the following boundary conditions:

�ūa*(x�y, s)��0, �s̄a*(x�y, s)��0 as �x��� (17b)

This yields the following expressions for the transformed velocity ūa*(x�y, s) and stress
s̄a*(x�y, s), namely

ūa*(x�y, s)=
la

(1)s+1
ha

J(x�y) ·F( (s), s̄a*(x�y, s)=K(x�y) ·F( (s) (18)

The kernels, or Green’s functions, J and K are second- and third-rank tensors respectively, and
are given by

J(x�y)=
1

8p

�I
r
+

rr
r3

�
, K(x�y)=

3
4p

rrr
r4 (19)

for an unbounded three-dimensional domain, where r=x−y and r= �x−y�. Note that J and
K are respectively, second-rank symmetric and third-rank anti-symmetric tensors with respect
to r. The corresponding integral representation is now derived similar to that corresponding to
Stokes flow. The Reciprocal (Green’s) theorem is first invoked, relating the fields (ūa, s̄a) and
(ūa*, s̄a*). The theorem is straightforward to derive [28], and its statement for the present
problem is as follows:

&
Va(t)

{ūa(y, s) ·È9y · s̄a*(x�y, s)É− ūa*(x�y, s) · [9y · s̄a(y, s)]} dVy

=
&

Ga(t)

n(y, t) · [s̄a*(x�y, s) · ūa(y, s)− s̄a(y, s) · ūa*(x�y, s)] dGy (20)
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where s is just a parameter. Substitution of the fundamental singular solution (18) into
theorem (20), using Equation (17), removing the arbitrary vector F( , and interchanging the label
x and y, lead to the following integral equation in the frequency domain:

&
Ga(t)

n(y) ·
��la

(1)s+1
ha

�
s̄(y, s) ·J(x�y)

n
dGy−

&
Ga(t)

n(y, t) · [ū(y, s) ·K(x�y)] dGy

=ca(x, t)ūa(x, s), x�Va(t)@Ga(t) (21)

where ca(x, t) is equal to 1 for x belonging to the interior of Va(t). For a point on the
boundary Ga(t), its value depends on the jump in the value of the first integral on the
boundary as the boundary is crossed. Thus ca(x, t)=1

2 if the boundary is Lyapunov smooth,
which requires that a local tangent to the boundary exists everywhere. This assumption,
however, is not valid in the vicinity of sharp corners, cusps, or edges. In such cases, a separate
treatment is needed. This issue will be further examined shortly.

The inverse Laplace transform of Equation (21) yields the desired integral equation in the
time domain

1
ha

&
Ga(t)

n(y, t) ·
�

la
(1) (sa(y, t)

(t
+sa(y, t)

n
·J(x�y) dGy−

&
Ga(t)

n(y, t) ·ua(y, t) ·K(x�y) dGy

=ca(x, t)ua(y, t), x�Va(t)@Ga(t) (22)

for the class of problems envisaged in the present study.
In the derivation of Equation (22), the fluids are tacitly assumed to be in a state of rest

initially, or, more particularly, in a stress-free state. As mentioned earlier, this assumption
greatly simplifies the formulation. Indeed, the inclusion of an initial stress condition leads to
an additional term in Equation (15) when the Laplace transform of the constitutive equation
(7) is taken. If the initial stress is not generally a constant, thus is dependent on position, a
volume integral emerges, which must be added to the integral equation (21) in the frequency
domain. Correspondingly, a volume integral emerges in Equation (22) in the time domain. It
is obvious that the presence of a volume integral complicates matters significantly, and may
not be necessary for a wide range of practical flow problems.

In the limit la
(1)�0, Equation (22) reduces to the integral equation corresponding to Stokes

flow

1
ha

&
Ga(t)

ta(y, t) ·J(x�y) dGy−
&

Ga(t)

n(y, t) ·ua(y, t) ·K(x�y) dGy=ca(x, t)ua(y, t),

x�Va(t)@Ga(t) (23)

Unlike Equation (22), Equation (23) relates directly the velocity field ua(x, t) at any point
inside the fluid region Va(t), or on the boundary Ga(t), to the traction ta(x, t). The situation
is quite different for the viscoelastic flow problem. The major difficulty in dealing with the
solution of Equation (22) is the explicit presence of the stress tensor rather than the traction
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vector as in Equation (23). Equation (22) is valid for the general transient viscoelastic flow
with moving boundary, where the normal to the boundary changes with time. A direct relation
between velocity and traction is not possible unless the normal vector is constant with time.

Consider now the evaluation of ca(x, t) for x belonging to Ga(t). At each time, t, the value
of ca(x, t) depends solely on the geometry of the boundary involved. Thus, ca(x, t)=1

2 for a
smooth boundary. More generally, if a uniform velocity field, such as ua(x, t)=ue, is applied
over a closed boundary, e being the direction of the velocity and u its magnitude, then all
derivatives (including tractions and stresses) must vanish. Hence, at any time t, Equation (22)
reduces to

ca(x, t)=ee:
&

Ga(t)

[n(y, t) ·K(x�y)] dGy, x�Ga(t) (24)

This expression for ca(x, t) can be used at each time step of the flow, as the fluid is moving
to occupy a changing domain.

3.2. Boundary integral equations for drop deformation

It is convenient to apply Equation (22) separately to the two regions occupied by the drop and
the suspending fluid. First, recall that for the present problem Va(t)Vd(t) and Ga(t)Gi(t)
for the fluid occupying the drop region, and Va(t)Vs(t) and Ga(t)Gs(t)Gi(t)@Gc for the
suspending fluid, so that Equation (22) may be explicitly written as

1
hs

&
Gi(t)

n(y, t) ·
�

ls

(ss(y, t)
(t

+ss(y, t)
n

·J(x�y) dGy+
1
hs

&
Gc

�
ls

(ts(y, t)
(t

+ ts(y, t)
n

·J(x�y) dGy

−
&

Gi(t)

n(y, t) ·ui(y, t) ·K(x�y) dGy=
&

Gc

n(y) ·uc(y) ·K(x�y) dGy+

Á
Ã
Í
Ã
Ä

us(y, t) x�Vs(t)
cs(x, t)us(y, t) x�Gc

cs(x, t)ui(y, t) x�Gi(t)
0 x�Vd(t)

(25)

when Equation (22) is applied to the suspending fluid region, and

1
hd

&
Gi(t)

n(y, t) ·
�

ld

(sd(y, t)
(t

+sd(y, t)
n

·J(x�y) dGy−
&

Gi(t)

n(y, t) ·ui(y, t) ·K(x�y) dGy

=

Á
Ã
Í
Ã
Ä

0 x�Vs(t)@Gc

cd(x, t)ud(y, t), x�Gi(t)
ud(y, t), x�Vd(t)

(26)

when Equation (22) is applied to the drop region. Note that the superscript (1) has been
dropped from l s

(1) and ld
(1). The presence of the traction in the second integral of Equation
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(25), as opposed to that of the stress tensor, is due to the fact that the normal vector to the
channel boundary, Gc, does not depend on time. Note that condition (9) was also used. The
evolution of the interface is the main phenomenon of interest to the present problem. The
principal variable is thus the velocity at the interface ud(x�Gi, t)=us(x�Gi, t)ui(x�Gi, t).
Note that the tractions on each side of the interface must also be determined. Condition (11a)
may be taken advantage of, which relates the normal tractions in terms of the interfacial
tension coefficient, and the tractions are eliminated at the interface. However, unlike the
Newtonian case [54], Equations (25) and (26) involve explicitly the stress rather than the
traction. This problem will be circumvented once the numerical solution to the problem is
examined.

4. SOLUTION PROCEDURE AND NUMERICAL IMPLEMENTATION

In this section, the solution of system (25) and (26) is examined, subject to the kinematic and
dynamic conditions at the interface. A time-marching scheme is first implemented for the
integral and kinematic equations. At each time, the location of the nodes and elements of the
discretized interface is determined by solving Equation (10). As the boundary elements are
distorted, the mesh is refined through element subdivision. This allows the stress at the
interface to be eliminated by invoking the dynamic condition. Finally, the numerical imple-
mentation of the discretized equations is discussed.

4.1. Time-marching scheme

As mentioned above, the principal variable of interest is the velocity at the interface, which
dictates the evolution of the drop. For Newtonian fluids [29,30], the tractions on each side of
the interface need not be determined. Condition (11a) can be used, which relates the normal
tractions in terms of the interfacial tension coefficient, and the tractions can be eliminated at
the interface altogether. The situation is more difficult for viscoelastic fluids as the traction at
the interface does not figure explicitly in Equations (25) and (26). This difficulty is circum-
vented by approximating the time derivative of the stress by a finite difference. If a Euler
scheme is used and higher-order terms in the time increment Dt are neglected, then

n(y, t) ·
�

la

(sa(y, t)
(t

+sa(y, t)
n
:
�la

Dt
+1

�
ta(y, t)−

la

Dt
n(y, t) ·sa(y, t−Dt)+O(Dt)

(27)

By using Equation (27), the integral equations (25) and (26) will only involve the traction (and
not the stress) at the current time. However, the stress sa(y, t−Dt) must still be dealt with.
For this, one can derive an equation for stress similar to that for Newtonian fluids [24,28],
which makes the computational requirement much heavier, even if this is done at the
post-processing stage. Alternatively, the treatment becomes much simpler if the normal vector
at the current time is expanded about the previous time step and higher-order terms in Dt are
neglected: n(y, t):n(y, t−Dt)+O(Dt). In this case, Equation (27) reduces to
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n(y, t) ·
�

la

(sa(y, t)
(t

+sa(y, t)
n
:
�la

Dt
+1

�
ta(y, t)−

la

Dt
ta(y, t−Dt)+O(Dt) (28)

A similar discretization scheme is also applied to Equation (10) in order to determine the
evolution of the interface.

4.2. Boundary element equations

Using the above time discretization, Equation (25) becomes

1
hs

&
Gc

Ts(y, t) ·J(x�y) dGy+
1
hs

�ls

Dt
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� &
Gi(t)

ts(y, t) ·J(x�y) dGy

−
&

Gi(t)

n(y, t) ·ui(y, t) ·K(x�y) dGy

=
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hsDt
&

Gi(t)

ts(y, t−Dt) ·J(x�y) dGy+
&

Gc

n(y) ·uc(y) ·K(x�y) dGy+

Á
Ã
Í
Ã
Ä

us(y, t), x�Vs(t)
cs(x, t)us(y, t), x�Gc

cs(x, t)ui(y, t), x�Gi(t)
0 x�Vd(t)

(29)

whereas Equation (26) is rewritten as

1
hd

�ld

Dt
+1

� &
Gi(t)

td(y, t) ·J(x�y) dGy−
&

Gi(t)

n(y, t) ·ui(y, t) ·K(x�y) dGy

=
ld

hdDt
&

Gi(t)

td(y, t−Dt) ·J(x�y) dGy+

Á
Ã
Í
Ã
Ä

0 x�Vs(t)@Gc

cd(x, t)ud(y, t), x�Gi(t)
ud(y, t), x�Vd(t)

(30)

The abbreviation Ts(x, t)=ls [(ts(x, t)/(t ]+ ts(x, t), x�Gc, has been introduced. This term can
be considered as a generalized traction and is determined as an unknown without having to
resort to a finite difference of the time derivative.

Before manipulating further Equations (29) and (30), it is convenient to introduce the
following abbreviations:

as
�ls

Dt
+1

�−1

, ad
�ld

Dt
+1

�−1

, Rh
hd

hs

(31)

where Rh is the drop-to-suspending fluid viscosity ratio. The multiplication of Equation (29) by
as and Equation (30) by Rhad, the addition of the resulting equations, and the use of boundary
conditions (11) lead to
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&
Gi(t)

!
(Rhad−as)n(y, t) ·ui(y, t) ·K(x�y)+

g

hs

k(y, t)n(y, t) ·J(x�y)
"

dGy

−
as

hs

&
Gc

[Ts(y, t) ·J(x�y)] dGy= (Rhad+as)cd(x, t)ud(x, t)

−
1

hsDt
&

Gi(t)

{[(lsas−ldad)td(y, t−Dt)

−lsasgk(y, t−Dt)n(y, t−Dt)] ·J(x�y)} dGy

−as
&

Gc

[n(y) ·uc(y) ·K(x�y)] dGy, x�Gi(t) (32)

Another integral equation is also needed, which governs the value of the velocity and traction
on the walls of the channel. It can be derived similarly to read

1
hs

&
Gc

Ts(y, t) ·J(x�y) dGy+
Rhad−as

as

&
Gi(t)

[n(y, t) ·ui(y, t) ·K(x�y)] dGy

=cs(x, t)uc(x)+
&

Gc

[n(y) ·uc(y) ·K(x�y)] dGy

−
1

hsas

&
Gi(t)

�
gk(y, t)n(y, t)−

lsas−ldad

Dt
td(y, t−Dt)

n
·J(x�y) dGy, x�Gc (33)

where the boundary condition (9) for the velocity along Gc has been used. The normal vector
on Gc is independent of time, which leads to the time derivative of the traction (instead of the
stress) in the integrals along the channel. As the velocity on Gc is fully prescribed only the
traction needs to be determined at that boundary.

Equations (32) and (33) represent two coupled equations for the velocity at the interface,
ui(x�Gi, t), and the generalized traction at the channel, Ts(x�Gc, t). Also, following the
determination of these unknowns, the flow field off the interface and cavity wall can be
calculated using the appropriate equations in regions Vd(t) and Vs(t).

4.3. Numerical implementation

The numerical solutions of Equations (32) and (33) are obtained in a similar way as those of
the Newtonian problem [55]. The equations are discretized into a finite sum of contributing
terms over the boundaries. In this study, the simplest form of the BEM is adopted, and the
velocity and traction are assumed to be constant over each boundary element. The resulting
algebraic system is solved using the LU factorization method. For the present problem, the
duct bounding the surrounding (ambient) fluid is discretized into triangular elements along
with the interface between drop and ambient fluid. The geometrical flow model is illustrated
schematically in Figure 1. The flow of the suspending fluid is induced by the action of a
driving pressure gradient of the Poiseuille type, although other types of flow are also used (see
below).
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Consider now the application of the integral equations (32) and (33) for a point on the
boundary, i.e., for x�Gc@Gi(t). The flow field at any interior point x�V(t) is obtained once
the variables at the boundary are known. Since the velocity is fully prescribed on the stationary
boundary, Gc, only the traction (or stress) will be determined there. The time derivative in
Equation (10) is approximated by an explicit Eulerian finite difference scheme, with higher-
order terms in the time increment, Dt, being neglected. Once the flow field is determined at
each time step, t, the position of the interface is updated. The evolution of Gi(t) is dictated by
Equation (10). The integrals in Equation (10) are discretized into a finite sum of contributing
terms over the boundaries. In this work, the boundary elements are assumed to be geometri-
cally linear so that the velocity and traction are constant over each element. The use of
higher-order elements is possible, but is not crucial given the mesh refinement and remeshing
capabilities involved in the current procedure. The traction is constant over flat linear element,
and is multiply valued at a corner node if higher-order elements are used. Although this
problem is efficiently circumvented in two-dimensional problems [22], it remains a major open
issue for a complex three-dimensional geometry. In two dimensions, the traction is assumed to
be double valued at every node of a curved boundary. Another advantage of the constant
boundary element is that the value of c(x, t) is always and everywhere equal to 1

2. In addition,
the normal vector to each element is determined exactly.

4.4. Adapti6e meshing

Khayat and Marek [4] gave a detailed account of the adaptive meshing used for an interface
or free surface. The treatment follows closely the method proposed by Nambiar et al. [56], who
adopted two-dimensional mesh refinement for finite element problems. Only a summary of the
method will be given here. A simple algorithm is proposed for the adaptive refinement of the
(two-dimensional) triangular mesh of the evolving interface. Initially (tB0), the drop is
assumed to occupy a three-dimensional region, Vd(tB0) bounded by the interface Gi(tB0). As
the drop deforms, some or all of the elements grow in size; depending on the ambient flow, the
element may grow or decrease in size.

When the interface deforms, mesh refinement is carried out by sub-dividing the elements
that are too distorted. Generally, the criteria for sub-division are based on the element area
and the length of the edges. However, it turns out that the length of the longest edge is a
reliable criterion by itself. In this case, at each time step of the flow, a list of elements is
established, with the length of the longest edge greater than an imposed tolerance, Dmax. The
list is sorted in the order of increasing length of the longest edges of each element. In order to
avoid generating mesh incompatibilities or elements with poor aspect ratio during refinement,
larger elements are subdivided first. The sub-division starts from the last (i.e. the longest edge)
element in the list, and is continued recursively until the list is empty. The sub-division is
carried out by bisecting the largest of the edges of the element in the list.

Two distinct cases of element sub-division arise. In the first case, the edge that is being
sub-divided is on the boundary of the domain, and in the second case the edge is inside the
domain. To prevent the creation of any non-conforming elements in the second case, the
element that shares the common longest edge is also bisected along with the first element. The
creation of four elements in such a manner is carried out only when the bisected edge is the
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longest edge of both elements. If this condition is not met, the second element is added to the
end of the element list, which contains the distorted elements so that the second element is now
the current element for sub-division and the process is repeated. Again, the element selected for
sub-division will have an edge that is the longest among the edges of the elements in the list.

In order to facilitate the search process for the second element and the longest edge of
elements, the input data are initially processed to create three data structures, one structure
each for nodes, triangles, and edges. A node is defined by its x, y, and z co-ordinate. The
properties selected for a triangle are its three nodes, A, B, and C ; its three edges, AB, BC, and
CA ; and its area. The above information is structured such that the node numbers are ordered
in a counterclockwise direction for each element and edge AB is the longest edge of each
element. The properties of an edge are its two end nodes, its two neighboring triangles, and the
length of the edge.

The major advantage of dividing only the longest edge in a triangle is that the smallest angle
in the original mesh is not further sub-divided. Let, for example, C and A be the largest and
smallest angles respectively. If the (largest) angle C is greater than 90°, none of the newly
created angles can be smaller than the original (smallest) angle A. If C is equal to 90°, the
smallest angle A is duplicated as D. If, however, C is smaller than 90°, the newly created angle
D is slightly smaller than A. Further, if an angle A is smaller that 60°, it will never be bisected
using this algorithm. Rosenberg and Stenger [57] have shown that the smallest angle that can
be created in any subsequent mesh produced by the above method is bounded by half the
minimum angle present in the initial mesh. Thus, the aspect ratio of the triangles in the mesh
remains in an acceptable and known range.

The first step in the solution is to create the data file containing the description of the
problem domain, boundary conditions, loading, and initial mesh. The initial mesh is first
examined to check for initially distorted elements. This mesh comes from a computer-aided
design (CAD) system, such as PATRAN, PROENGINEER, or I-DEAS. The initial mesh is
then refined by the adaptive remeshing scheme described above. The refined mesh is then
submitted to the BEM solver. In practice it is found that the quality of the initial mesh is
adequate, and initial refinement is generally not necessary.

4.5. Determination of local cur6ature

The value of the curvature at a particular location (node) on the free surface is needed if
surface tension is to be accounted for. The curvature is obviously related to the divergence of
the normal vector, n(x, t), at the location in question. Thus, the determination of the curvature
is based on the estimation of the derivative of the normal vector components in the three
directions. For this, it is convenient to define local co-ordinates spanned by the plane tangent
to the surface at the local point and the normal to the plane [4].

Consider now the curvature at an element (centroid) of the discretized surface. Generally,
each node of the triangle belongs to an arbitrary number of elements, and the normal at the
node is not uniquely defined. The normal vector is then taken as the area average of the
normal vectors to the elements to which the node belongs. The normal vector anywhere to
the element is expanded in terms of suitably introduced interpolation functions, which allow
the determination of the curvature—9 ·n/2. This procedure was validated by computing the
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curvature for simple surfaces, which were discretized in triangular flat elements. Two cases
were treated, namely, the case of a spherical shell of radius equal to 1, and the case of a
parabolic surface [4].

5. NUMERICAL ASSESSMENT AND RESULTS

The calculations focus on the deformation of a drop in simple shear and duct flows. Both
fluids are assumed to be in a state of creeping motion as inertia effects are negligible for most
polymeric liquids. Since the rate of drop deformation is slow, it is reasonable to assume that
normal stress effects (which lead to the well-known Weissenberg rod-climbing phenomenon)
are small enough for the fluid to obey a linear viscoelastic constitutive equation. The results
are restricted to fluids that obey Maxwell’s constitutive model.

The validation of the formulation and solution procedure is first demonstrated for simple
two-phase flow configuration for which analytical solutions exist. Both Newtonian and
viscoelastic systems will be considered. The influence of mesh size and refinement will then be
assessed for simple shear flow. The general performance of the basic three-dimensional BEM
code was previously evaluated through comparison with the FEM, using the commercial
package POLYFLOW™ for one-phase confined flow [1] (see also References [5,29,30] for the
two-dimensional case). The accuracy for the two-dimensional code was assessed by comparing
the velocity in the axial and transverse directions for the flow inside a (plane) channel with
sudden contraction. Excellent agreement between the BEM and FEM data was obtained [5].
The performance of the three-dimensional code was assessed for simple cavity flow; good
agreement was also achieved [8].

5.1. Comparison between analytical and numerical solutions

Consider the two-phase azimuthal flow of incompressible viscoelastic fluids around a spherical
object as shown in Figure 2. There is an analogy between this problem and the deformation
of the drop inside a confined medium as illustrated in the notations in the figure. The sphere
plays the role of the confining cavity in Figure 1. The fluid in the immediate vicinity to the
sphere occupies the region r� [Rc, Ri] and replaces the suspending fluid, where Rc is the radius
of the rotating sphere and Ri is the location of the interface between the two fluids. The second
fluid occupies the region bounded by the interface and extends to infinity; it replaces the drop.
Let Rc=1 cm and Ri=2 cm. The sphere is assumed to start rotating from rest at an angular
speed V= t rad s−1, entraining with it the two fluids in circular motion. This time-dependent
rotation will induce a transient behavior in the two fluid regions, making the unsteady terms
in the governing equations non-vanishing. While the interface can be considered as fixed, it has
been assumed to rotate with the fluids similarly to the case of a deforming drop. In this case,
Equation (10) still applies. The aim of this section is to first determine analytically the
azimuthal velocity and traction components at the interface, and then compare them with the
numerical solution. This situation is comparable with the problem of drop deformation, where
the velocity and traction are calculated at the interface.
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Figure 2. Spherical flow of two-phase viscoelastic system. The analogy with the system in Figure 1 is
established by noting that, in this case, region Vs= [Rc, Ri] and region Vd= [Ri,�).

Consider now the general flow field in the two regions: Vs{r �RcBr5Ri} and Vd
{r �Ri5rB�}. Although the analytical solution can be obtained for Oldroyd-B fluids, the
comparison will be limited to Maxwell fluids. In this case, the fluids in question are polymer
melts and not solutions: ha

(s)=0 and ha=ha
(p). The only non-vanishing velocity and stress

components are the azimuthal components. The general expression for the velocity is given by

uf(r, u, t)=

Á
Ã
Í
Ã
Ä

�Gs(t)
3hsr2+Hs(t)r

n
sin u, r� [Rc, Ri]

Gd(t)
3hdr2 sin u, r� [Ri,�)

(34)

and the expression for the shear stress is of the form

trf(r, u, t)=

Á
Ã
Í
Ã
Ä

Fs(t)
r3 sin u, r� [Rc, Ri]

Fd(t)
r3 sin u, r� [Ri,�)

(35)

where Fa(t), Ga(t) and Ha(t) are general time-dependent functions. Note that the solutions
above satisfy the conservation equations (5) and (6). In addition, the stress must satisfy the
constitutive equation (7), leading to
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la

dFa(t)
dt

+Fa(t)= −Ga(t) (36)

Note that interfacial tension effects are not implicated in the present problem as no normal
forces are involved. Conditions (11) for the continuity of the velocity and stress at the interface
r=Ri, as well as the boundary condition (9) at the cylinder give three additional equations to
Equation (36) to determine the time-dependent integration functions. After some manipula-
tion, the time-dependent expressions for the velocity and stress at the interface are given by

uf(Ri, u, t)=
Rrld

b2

�
b−

1
ld

+bt+
� 1

ld

−b
�

e−btn sin u (37)

tf(Ri, u, t)=
3Rrhd

Ri[Rhls(Rr
2−1)−ld]b2 (bt−1+e−bt) sin u (38)

where Rr=Ri/Rc is the aspect ratio, and b= [Rh(Rr
2−1)−1][lsRh(Rr

2−1)−ld].
Consider the case when the fluids in the regions Vs and Vd have relaxation time ls=0.5 s

and ld=1.5 s respectively. The viscosity ratio is taken equal to 3. The evolution of the velocity
at the interface is shown in Figure 3. The figure displays the analytical solution based on
Equation (37) and the numerical results based on six time increments ranging from 0.002 to 0.5
s. The mesh size is kept the same for all cases; 200 elements are taken for the sphere and 200
elements for the interface (r=Ri). There is good agreement generally, even for the coarsest
time step used. The case of a Newtonian system is also included. The numerical solution is
carried out with Dt=0.1 s. Similar convergence rates and agreement are obtained between
analytical and numerical solutions for the azimuthal traction. The results are shown in Figure
4. Further assessment of the accuracy will be made next when the deformation of a
three-dimensional drop inside a channel is considered.

5.2. Deformation of a drop in simple shear flow and further assessment of accuracy

The present formulation and computer implementation are further assessed for the problem of
drop deformation in simple shear flow. Aside from a drop of properties similar to those of the
suspending fluid, the numerical solution cannot be compared with an analytical solution.
However, the convergence and accuracy of the method can still be assessed by varying the time
increment and/or mesh size. The error is reflected in the volume change of the drop as it
deforms with time. The effect of time increment for a fixed mesh size has been extensively
examined for two-dimensional drop deformation problems [29–34]. It is usually found that,
for a given time increment, the error increases with time. The error is, however, controlled to
any degree of accuracy by decreasing the time increment. So the effect of the time increment
will not be explored here as the effect of mesh size is of more relevance to the present
(three-dimensional) formulation.

Consider the evolution of the drop as it deforms under the action of ambient simple shear
flow. The shear flow is in the (y, z) plane, with the velocity in the z-direction and given by
w=y/2 as shown in Figure 5. The figure shows a typical deformation stage with the mesh used
for the drop interface. Both suspending fluid and drop are Newtonian (ls=ld=0 s). The drop
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Figure 3. Evolution of velocity at the spherical interface. Comparison between analytical and numerical
solution for 0.0255Dt (s)50.5.

and suspending fluid viscosities are the same (Rh=1). The drop is initially spherical with initial
radius equal to 0.2 (unit length). Figures 6–9 display the evolution of the drop as it deforms
with time.

The initial configuration is shown in Figure 6 in the (x, y, z) space (Figure 6(a)), with
projections in the (x, y) plane (Figure 6(b)), the (y, z) plane (Figure 6(c)) and the (x, z) plane
(Figure 6(d)). Obviously, in this case the four perspectives give the same information. Figure
7 shows the deformation of the drop after 2 s. The overall extension is obvious in the (x, y,
z) space (Figure 7(a)), from the (y, z) plane (Figure 7(c)), and the elliptical shape in the (x, z)
plane (Figure 7(d)). At 8 s, there is pronounced thinning as shown in the (y, z) plane of Figure
8(c). The corresponding flattening is also obvious in the (x, z) plane (Figure 8(d)). Note that
the symmetry is preserved overall. Finally, Figure 9 displays the deformation of the drop after
10 s. This figure shows a similar but a more enhanced deformation than in Figure 8. There is
also a slight loss of symmetry due to numerical error (see Figure 9(c)).
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Figure 4. Evolution of radial traction at the spherical interface. Comparison between analytical and
numerical solution for 0.0255Dt (s)50.5.

The influence of mesh size on the evolution of the error is displayed in Figure 10. As
mentioned earlier, the mesh size is dictated by the length of the longest element edge, Dmax.
Thus, when Dmax is small, the surface elements tend to sub-divide more often than when Dmax

is large. The figure shows the error for Dmax� [0.15,�) (cm) for a sphere of initial radius equal
to 0.2 cm, indicating that the error growth is effectively controlled by Dmax. Note that Dmax is
infinite (larger than 0.4 cm in the current problem), and no element sub-division occurs in this
case. It is found from the figure that, for a given Dmax, the error tends to generally initially
increase sharply with time, but seems to somewhat level out thereafter. The initial period of
error growth corresponds to a period when no element sub-division has taken place yet. At this
stage, the value of Dmax has no influence as, although the elements at the interface continue to
deform, the criterion for element sub-division would not yet be satisfied. Once the element size
reaches Dmax, the process of element sub-division begins, and the sharp error growth starts to
decrease. This seems to be typically the case for the curves corresponding to Dmax� [0.3, 0.2]
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Figure 5. Typical deformation of a three-dimensional drop subject to ambient shear flow. The figure
shows the type of mesh used and co-ordinate systems.

(cm), as these curves display a slight overshoot in the error. Note that the curve Dmax=0.15
cm does not display an overshoot. The non-monotonic and sudden change in error behavior
is closely correlated with the change in the number of elements.

Figure 11 displays the evolution of the number of elements at the drop/matrix interface as
the drop deforms with time for the same range of Dmax values as before. In general, the
number of elements increases with time, except for the crudest mesh (Dmax=�), where the
number of elements remains unchanged (72 elements). Obviously, given the discreteness of the
process of element sub-division, the evolution of element number occurs stepwise. Thus, one
expects the error to decrease with deformation. The overall correlation between the number of
elements in Figure 11 and the relative error in Figure 10 is easily inferred from the two figures.
In particular, the onset of the overshoot in relative error coincides with a sudden increase in
the number of elements, as is typically indicated by the curves corresponding to Dmax=0.20
cm.

5.3. Deformation of a drop in duct flow and influence of fluid elasticity

The influence of fluid properties on drop deformation is now examined for a drop deforming
in a confined medium. The influences of viscosity ratio, interfacial tension, and drop elasticity
are explored. So, consider the evolution of a drop as it deforms under the action of the
ambient flow in a cylindrical (straight) duct. The situation is again typically illustrated in
Figure 1. The cylindrical duct is discretized into 362 triangular elements. Obviously, while the
number of duct elements remains constant, that of the drop interface grows with drop
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Figure 6. Deformation of a drop in simple shear flow (Rh=1). Both suspending fluid and drop are
Newtonian (ls=ld=0 s). Figure shows initial spherical drop in the (x, y, z) space (a), with projections

in the (x, y) plane (b), the (y, z) plane (c), and the (x, z) plane (d).

deformation. The interface is discretized initially into 72 elements. This number of elements
turned out to be sufficient as it leads to a reasonable (order of one) duct/drop element ratio.
It is found that it is the element ratio, and not so much the actual number of elements that
influences the solution accuracy.

Figure 12 shows the boundary element mesh at a typical deformation stage of an initially
spherical drop inside a cylindrical duct. As expected in duct flow, the drop front tends to
elongate, while the drop tale tends to flatten out. Both drop and suspending fluid are assumed
to be Newtonian (ls=ld=0 s). The duct has a length-to-radius ratio equal to 16. The
z-direction is taken along the cylinder axis, originating at the beginning of the cylinder lying
in the (x, y) plane. The deformation of the drop is induced by the ambient flow in the duct,
which corresponds to Poiseuille flow, which is imposed at the two ends of the duct. Thus, the
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Figure 7. Deformation of the drop initially shown in Figure 6 after 2 s. Shown is the deformed drop in
the (x, y, z) space (a), circular projections in the (x, y) plane (b), elongated drop in the (y, z) plane (c),

and elliptical shape in the (x, z) plane (d).

drop is assumed at all times to be located away from the ends of the duct for Poiseuille
conditions to apply there.

The influence of fluid properties is assessed by monitoring the evolution of the deformation
with time, which is defined as the relative change in the surface area, S(t), of the drop, namely
(S−S0)/S0, where S0 is the initial surface area of the drop. Given the high deformation
induced by the ambient flow an ellipsoidal drop was assumed, of minor and major axes equal
to 0.4 and 1 cm respectively. Recall that the length of the duct is 16 cm and its diameter is 2
cm The drop is initially centered at z=5 cm on the axis of the duct. In what follows, the
influence of viscosity ratio and interfacial tension will be examined next. In all calculations,
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Figure 8. Deformation of the drop initially shown in Figure 6 after 8 s. Shown is the deformed drop in
the (x, y, z) space (a), circular projections in the (x, y) plane (b), pronounced thinning in the (y, z) plane

(c), and flattening in the (x, z) plane (d). Note that symmetry is preserved overall.

Dmax=0.6 cm and Dt=0.01 s. Consider first the influence of the viscosity ratio, Rh. Figure 13
displays the deformation of a drop with interfacial tension coefficient g=1 dyn cm−1 and
Rh� [2, 10]. The deformation is monitored over a period of 0.8 s. For any viscosity ratio, the
deformation rate is relatively low initially. As the drop deforms further, the deformation
increases, but ultimately slows down again in the later stages. This is reflected by the relative
flattening of the curves in the figure. It is clear from the figure that deformation is lower as Rh

increases. Thus, as expected, drop viscosity tends to inhibit deformation. This behavior was
also confirmed for viscoelastic systems.
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Figure 9. Deformation of the drop initially shown in Figure 6 after 10 s. What is shown is a similar but
a more enhanced deformation than in Figure 8. There is also a slight loss of symmetry due to numerical

error (see (c)).
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Figure 10. Influence of mesh refinement on the evolution of the relative error for a drop as in Figure 5.
The error is measured as the relative volume change (V−V0)/V0 of a drop deforming in shear flow. The

error is plotted as function of time for Dmax� [0.15,�).

The influence of interfacial tension is displayed in Figure 14 for g� [0, 4] (dyn cm−1) and
Rh=5. Again, both drop and suspending fluid are Newtonian (ld=0 and ls=0). The
deformation evolves overall very similar to that in Figure 13. The figure indicates that
interfacial tension prohibits deformation, similarly, to drop viscosity. This is particularly
obvious from the curve corresponding to g=4 dyn cm−1. In this case, the drop is observed to
simply translate inside the duct without deforming in the early stages. It is only after 0.15 s
that a deformation is perceptible.

Finally, the influence of fluid elasticity is examined for the same ellipsoidal drop. In this
case, the drop is taken to be elastic (ld"0), and the ambient flow is assumed to be Newtonian
(ls=0). The relaxation times examined range from ld=0 s for a Newtonian drop to 0.3 s. The
viscosity ratio is fixed at Rh=3. The interfacial tension coefficient is also fixed g=1
dyn cm−1.
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Figure 11. Evolution of number of elements at the drop interface in simple shear flow as function of time
for Dmax� [0.15, �).

Consider the evolution of the drop as it deforms under the action of the ambient flow in the
circular duct as above. The influence of the relaxation time, ld, of the drop is shown in Figure
15. The figure displays the evolution of the deformation of a drop with ld� [0, 0.3] (s) in a
Newtonian suspending fluid (ls=0 s). The case of a Newtonian drop moving in a Newtonian
matrix (ls=ld=0 s) is included for reference. It is observed that the drop deforms more as its
relaxation time increases. The case of a Newtonian drop placed in a viscoelastic fluid (ld=0,
ls"0) leads to an opposite trend (not shown). Deformation is shown to increase with time.
The case of small relaxation time (0.01 s) is also included in the figure. Although this value of
the relaxation time is small the figure shows that there is a significant difference between
Newtonian and viscoelastic systems.

The fact that fluid elasticity enhances deformation is somewhat surprising, as one expects
elasticity to oppose deformation (one can easily picture the stretching of an elastic band to be

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 241–275



3D DROP DEFORMATION IN CONFINED FLOW 269

Figure 12. Typical deformation of a three-dimensional drop subject to ambient (cylindrical) duct flow.
The figure shows the type of mesh used and co-ordinate systems.

more difficult than that of a liquid band!). However, the results shown in Figure 15 are based
on a linear (Maxwell) constitutive model, which reflects the true fluid behavior under
conditions of small deformation rates only. To illustrate the role of elasticity more clearly,
consider the discretized form of the Maxwell constitutive equation, which is Equation (7) with
h (s)=0. For simplicity of discussion, the subscripts and superscripts are dropped. Thus, for the
drop, the constitutive equation becomes

l
(t

(t
+t=hD (39)

Here l and h should be understood as the relaxation time and viscosity of the drop
respectively. If the transient term is approximated by implicit finite difference, then at the kth
step, it is not difficult to show that, to O(Dt), the excess stress tensor is given by

t (k)=ha %
k

i=0

�la

Dt
�i

D(k− i) (40)

where a= [(l/Dt)+1]−1 is given similarly as in Equation (31). Now, the rate-of-strain tensor
is assumed to remain essentially unchanged with time, such that D(k):D. This is a reasonable
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Figure 13. Influence of viscosity ratio on drop deformation for Rh� [2, 10]. Both drop and suspending
fluid are Newtonian (ld=0 and ls=0) and g=1 dyn cm−1.

assumption in the current problem of a drop deforming in a duct flow, where the mean of the
rate-of-strain tensor corresponds to fully developed Poiseuille flow. In this case, since �la/
Dt �B1, Equation (40) reduces to

t (k)=ha %
k

i=0

�la

Dt
�i

D(k− i):
�

ha %
k

i=0

�la

Dt
�in

D=ha2D (41)

for large k. Note that the Newtonian limit is recovered from Equation (41) when l=0.
Equation (41) clearly indicates that the effective viscosity for a viscoelastic fluid is approxi-
mately equal to ha2, and is therefore smaller than the Newtonian viscosity. Since drop
deformation increases for drops with smaller viscosity, this explains why a viscoelastic drop
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Figure 14. Influence of interfacial tension on drop deformation for g� [0, 4] (dyn cm−1). Both drop and
suspending fluid are Newtonian (ld=0 and ls=0) and Rh=5.

tends to deform more than a Newtonian drop (with the same viscosity) or a drop with higher
relaxation time.

The results in Figure 15 are in agreement with the findings of Bousfield et al. [58], who
considered the break-up of viscoelastic filaments. They followed the evolution of an imposed
disturbance on a filament of dilute polymer solution obeying the Oldroyd-B constitutive
equation using a transient finite element solution and a one-dimensional thin filament
approximation. They found that the disturbance initially grows much more rapidly on the
viscoelastic filament (see Figure 9 in the paper by Bousfield et al. [58]). This behavior is in
compliance with linear theory. These observations also correlate well with the finite element
calculations of Mao and Khayat [37] in the case of the deformation of a viscoelastic liquid
column.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 241–275



R. E. KHAYAT272

Figure 15. Influence of fluid elasticity for a viscoelastic drop deforming in a Newtonian suspending fluid
for ls=0 and ld� [0, 0.3] (s), g=1 dyn cm−1 and Rh=5.

6. CONCLUDING REMARKS

A boundary element approach is proposed for the analysis of three-dimensional drop deforma-
tion in a confined medium of viscoelastic fluid systems obeying the linear Oldroyd-B or
Jeffrey’s model. A boundary-only formulation is implemented for this constitutive model. A
Lagrangian formulation is adopted for the evolution of the interface between drop and
suspending fluid. As the triangular boundary element mesh becomes distorted with time, the
stretched elements are sub-divided into two elements once the longest edge exceeds an imposed
criterion for length. At each node of the mesh the curvature is determined in an average sense,
thus allowing the account of interfacial tension. The validity of the method is first established
upon comparison with exact results in the case of two-phase viscoelastic rotating flow around
a rigid sphere. The influence of mesh size and mesh refinement on the accuracy and
convergence of the formulation is assessed for the case of a three-dimensional drop deforming
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in simple shear flow. The accuracy is examined by monitoring the evolution of the relative
change in drop volume. Obviously, any change in volume is a measure of numerical error. It
is demonstrated that the error can be controlled to any degree of accuracy through mesh
refinement. Finally, the influence of the viscosity ratio, interfacial tension and drop elasticity
is explored for a three-dimensional drop deforming inside a cylindrical duct. While drop
viscosity and interfacial tension inhibit deformation, drop elasticity tends to enhance
deformation.

The observation that fluid elasticity enhances deformation is in agreement with the findings
of existing solutions on free surface deformations of viscoelastic fluids. The range of validity
of the present formulation is obviously limited to small rates of deformation. As the rate of
deformation increases with motion, non-linear normal stresses (which lead to the Weissenberg
rod-climbing phenomenon) become significant enough to oppose deformation. A natural and
important extension of the present study is to include the upper-convected terms in the
constitutive equation for an adequate account of non-linear normal stress effects.
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